PART VIII

Network Properties

(Ownership, Service Paradigm, Measures of Performance)

Network Ownership And Service Type

• Private

- Owned by individual or corporation
- Restricted to owner's use
- Typically used by large corporations

• Public

- Owned by a common carrier
- Individuals or corporations can subscribe
- "Public" refers to availability, not data

Advantages And Disadvantages

• Private

- Complete control
- Installation and operation costs

Public

- No need for staff to install/operate network
- Dependency on carrier
- Subscription fee

Public Network Connections

- One connection per subscriber
 - Typical for small corporation or individual
 - Communicate with another subscriber
- Multiple connections per subscriber
 - Typical for large, multi-site corporation
 - Communicate among multiple sites as well as with another subscriber

Virtual Private Network

- A service
- Provided over public network
- Interconnects sites of single corporation
- Acts like private network
 - No packets sent to other subscribers
 - No packets received from other subscribers
 - Data encrypted

Network Service Paradigm

- Fundamental characteristic of network
 - Understood by hardware
 - Visible to applications
- Two basic types of networks
 - Connectionless
 - Connection-oriented

Connectionless (CL)

Sender

- Forms packet to be sent
- Places address of intended recipient in packet
- Transfers packet to network for delivery

Network

- Uses destination address to forward packet
- Delivers

Characteristics Of Connectionless Networks

- Packet contains identification of destination
- Each packet handled independently
- No setup required before transmitting data
- No cleanup required after sending data
- Think of postcards

Connection-Oriented (CO)

Sender

- Requests "connection" to receiver
- Waits for network to form connection
- Leaves connection in place while sending data
- Terminates connection when no longer needed

Connection-Oriented (CO) (continued)

- Network
 - Receives connection request
 - Forms path to specified destination and informs sender
 - Transfers data across connection
 - Removes connection when sender requests
- Think of telephone calls

Terminology

- In conventional telephone system
 - Circuit
- In CO data network
 - Virtual Circuit
 - Virtual Channel

Comparison Of CO and CL

CO

- More intelligence in network
- Can reserve bandwidth
- Connection setup overhead
- State in packet switches
- Well-suited to real-time applications

• CL

- Less overhead
- Permits asynchronous use
- Allows broadcast/multicast

Two Connection Types

- Permanent Virtual Circuit (PVC)
 - Entered manually
 - Survives reboot
 - Usually persists for months
- Switched Virtual Circuit (SVC)
 - Requested dynamically
 - Initiated by application
 - Terminated when application exits

Examples Of Service Paradigm Various Technologies Use

Technology	СО	CL	used for LAN	used for WAN
Ethernet		•	•	
Token Ring		•	•	
FDDI		•	•	
Frame Relay	•			•
SMDS		•		•
ATM	•		•	•
LocalTalk		•	•	

Connection Multiplexing

- Typical computer has one physical connection to network
- All logical connections multiplexed over physical interconnection
- Data transferred must include *connection identifier*

Connection Identifier

- Integer value
- One per active VC
- Not an address
- Allows multiplexing
 - Computer supplies when sending data
 - Network supplies when delivering data

Example Connection Identifier (ATM)

- 24 bits long
- Divided into two parts
 - Virtual Path Identifier
 - Virtual Channel Identifier
- Known as (VPI/VCI)
- Different at each end of connection
 - Mapped by switches

Illustration Of ATM VC

- Switch maps VPI/VCIs
 - 17 to 12
 - 96 to 8

Two Primary Performance Measures

- Delay
- Throughput

Delay

- Time required for one bit to travel through the network
- Three types (causes)
 - Propagation delay
 - Switching delay
 - Queuing delay
- Intuition: "length" of the pipe

Throughput

- Number of bits per second that can be transmitted
- Capacity
- Intuition: "width" of the pipe

Components Of Delay

- Fixed (nearly constant)
 - Propagation delay
 - Switching delays constant
- Variable
 - Queuing delay
 - Depends on throughput

Relationship Between Delay And Throughput

- When network idle
 - Queuing delay is zero
- As load on network increases
 - Queuing delay rises
- Load defined as ratio of throughput to capacity
 - Called *utilization*

Relationship Between Delay And Utilization

- Define
 - D_0 to be the propagation and switching delay
 - U to be the utilization $(0 \le U \le 1)$
 - D to be the total delay
- Then

$$D = \frac{D_0}{(1-U)}$$

• High utilization known as *congestion*

Practical Consequence

Any network that operates with a utilization approaching 100% of capacity is doomed.

Delay-Throughput Product

- Delay
 - Time to cross network
 - Measured in seconds
- Throughput
 - Capacity
 - Measured in bits per second
- Delay × Throughput
 - Measured in bits
 - Gives quantity of data "in transit"

Summary

- Network can be
 - Public
 - Private
- Virtual Private Network
 - Uses public network
 - Connects set of private sites
 - Addressing and routing guarantee isolation

Summary (continued)

- Networks are
 - Connectionless
 - Connection-Oriented
- Connection types
 - Permanent Virtual Circuit
 - Switched Virtual Circuit
- Two performance measures
 - Delay
 - Throughput

Summary (continued)

- Delay and throughput interact
- Queueing delay increases as utilization increases
- Delay × Throughput
 - Measured in bits
 - Gives total data "in transit"