
PART XIV

Internet Applications

(Client-Server Concept, Use
of Protocol Ports, Socket API,
DNS, E-mail, TELNET, FTP)
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Functionality

� Transport layer and layers below

– Basic communication

– Reliability
� Application layer

– Abstractions

* Files

* Services

* Databases

– Names
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Dichotomy Of Duties

� Network

– Transfers bits

– Operates at application’s request
� Applications determine

– What to send

– When to send

– Where to send

– Meaning of bits
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Important Point

Although an internet system provides a basic communication
service, the protocol software cannot initiate contact with, or
accept contact from, a remote computer. Instead, two
application programs must participate in any communication:
one application initiates communication and the other accepts
it.
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How Two Application Programs
Make Contact

� One application

– Begins execution first

– Waits passively at prearranged location
� Another application

– Begins execution later

– Actively contacts first program
� Called client-server interaction
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Client-Server Paradigm

� Used by all network applications
� Passive program called a server
� Active program called a client
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Internet Communication

All network applications use a form of communication
known as the client-server paradigm. A server application waits
passively for contact, while a client application initiates
communication actively.
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Characteristics Of A Client

� Arbitrary application program
� Becomes client temporarily
� Can also perform other computations
� Invoked directly by user
� Runs locally on user’s computer
� Actively initiates contact with a server
� Contacts one server at a time
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Characteristics Of A Server

� Special-purpose, privileged program
� Dedicated to providing one service
� Can handle multiple remote clients simultaneously
� Invoked automatically when system boots
� Executes forever
� Needs powerful computer and operating system
� Waits passively for client contact
� Accepts requests from arbitrary clients
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Terminology

� Server

– An executing program that accepts contact over the
network

� Server-class computer

– Hardware sufficient to execute a server
� Informally

– Term server often applied to computer
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Direction Of Data Flow

� Data can flow

– From client to server only

– From server to client only

– In both directions
� Application protocol determines flow
� Typical scenario

– Client sends request(s)

– Server sends response(s)
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Key Idea

Although the client initiates contact, information can flow in
either or both directions between a client and server. Many
services arrange for the client to send one or more requests and
the server to return one response for each request.
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Clients, Servers, And Other Protocols

client

transport
internet

net. iface.

server

transport
internet

net. iface.

internet

� Clients and servers are application programs
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Server CPU Use

� Facts

– Server operates like other applications

* Uses CPU to execute instructions

* Performs I/O operations

– Waiting for data to arrive over a network does not
require CPU time

� Consequence

– Server program only uses CPU when servicing a request
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Multiple Services

� Can have multiple servers on single computer
� Servers only use processor when handling a request
� Powerful hardware required to handle many services

simultaneously
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Illustration Of Multiple Servers

client
1

transport
internet

net. iface.

client
2

transport
internet

net. iface.

server
1

server
2

transport
internet

net. iface.

internet

� Each server offers one service
� One server can handle multiple clients
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Identifying A Service

� Protocol port number used
� Each service given unique port number, P
� Server

– Informs OS it is using port P

– Waits for requests to arrive
� Client

– Forms request

– Sends request to port P on server computer
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The Point About Ports

Transport protocols assign each service a unique port
identifier. A server must specify the identifier when it begins
execution. A client must specify the identifier when it requests
transport protocol software to contact a server. Protocol
software on the server computer uses the identifier to direct an
incoming request to the correct server.
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In Theory

� Port numbers are merely integers
� Any server could use any port number
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In Practice

� Protocol port numbers used as service identifiers
� Need uniform numbering

– To allow arbitrary client to contact server on arbitrary
machine

– To avoid inventing ‘‘directory assistance’’ mechanism
� Port numbers

– Uniform throughout Internet

– Set by standards bodies

CS422  Part 14 20 Spring 1999



Terminology

� Sequential program

– Typical of most programs

– Single thread of control
� Concurrent program

– Multiple threads of control

– Execution proceeds ‘‘in parallel’’

– More difficult to create

CS422  Part 14 21 Spring 1999



Servers And Concurrency

� Sequential server

– Also called iterative

– Handles one request at a time
� Concurrent server

– Can handle multiple requests at a time

– No waiting
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Delay In Servers

� Concurrent server

– Server creates new thread of control to handle each
request

– Client only waits for its request to be processed
� Sequential server

– Client waits for all previous requests to be processed as
well as for its request to be processed

– Unacceptable to user if long request blocks short request
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Concurrency In Servers

Concurrent execution is fundamental to servers because
concurrency permits multiple clients to obtain a given service
without having to wait for the server to finish previous requests.
In a concurrent server, the main server thread creates a new
service thread to handle each client.
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Protocol Ports And Concurrent Servers

� Apparent problem

– One port number assigned to each service

– Concurrent server has multiple copies (threads) running

– Client and server may interact

– Messages sent to server’s port must be delivered to
correct copy
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Protocol Ports And Concurrent Servers
(continued)

� Solution to problem: use information about client as well as
server to deliver incoming packets

� TCP uses four items to identify connection

– Server’s IP address

– Server’s protocol port number

– Client’s IP address

– Client’s protocol port number
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Demultiplexing In A Concurrent Server

Transport protocols assign an identifier to each client as
well as to each service. Protocol software on the server’s
machine uses the combination of client and server identifiers to
choose the correct copy of a concurrent server.
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Variations On A Theme

� A server can use

– Connectionless transport (UDP)

– Connection-oriented transport (TCP)

– Both for a single service
� A single server can offer multiple services

– Often used for ‘‘trivial’’ services

– Server uses multiple port numbers simultaneously
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Variations On A Theme
(continued)

� A server can

– Maintain interaction with a client for days or hours

– Send a short response and terminate interaction

– Perform I/O on the local computer

– Become a client for another service (potential cycle
problem)
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Example Of Circularity

� Time server

– Returns time of day
� File server

– Allows client to read or write a file

– Calls time server when generating time stamp for file
� Suppose programmer modifies time server to log requests to

a file
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Interacting With Protocol Software

� Client or server uses transport protocols
� Protocol software inside OS
� Applications outside OS
� Mechanism needed to bridge the two

– Called Application Program Interface (API)
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Application Program Interface

� Part of operating system
� Permits application to use protocols
� Defines

– Operations allowed

– Arguments for each operation
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Socket API

� Originally designed

– For BSD UNIX

– To use with TCP/IP protocols
� Now

– Industry standard

– Available on many operating systems
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Socket

� OS Abstraction (not hardware)
� Created dynamically
� Persists only while application runs
� Referenced by a descriptor
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Descriptor

� Small integer
� One per active socket
� Used in all operations on socket
� Generated by OS when socket created
� Only meaningful to application that owns socket
� In UNIX, integrated with file descriptors
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Creating A Socket

� Application calls socket function

sdesc = socket(protofamily, type, proto)

� OS returns descriptor for socket
� Descriptor valid until application closes socket or exits
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Socket Functionality

� Socket completely general
� Can be used

– By client

– By server

– With a CO transport protocol

– With a CL transport protocol

– To send data, receive data, or both
� Large set of operations
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Socket Operations

� Close

– Terminate use of socket

– Permanent
� Bind

– Specify protocol port for a socket

– Specify local IP address for a socket

– Can use INADDR_ANY for any IP address
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Socket Operations
(continued)

� Listen

– Used by server

– Prepares socket to accept incoming connections
� Accept

– Used by server

– Waits for next connection and returns new socket
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Socket Operations
(continued)

� Connect

– Used by client

– Either

* Forms a TCP connection

* Fully specifies addresses for UDP
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Two Purposes Of The Connect Function

The connect function, which is called by clients, has two
uses. With connection-oriented transport, connect establishes a
transport connection to a specified server. With connectionless
transport, connect records the server’s address in the socket,
allowing the client to send many messages to the same server
without specifying the destination address with each message.
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Socket Operations
(continued)

� Send, sendto, and sndmsg

– Transfer outgoing data from application
� Recv, recvfrom, and recvmsg

– Transfer incoming data to application
� Many additional functions

– Supply support and utility services

– Some implemented as library calls

CS422  Part 14 42 Spring 1999



Examples Of Socket Support Functions

� Gethostbyname

– Maps domain name to IP address

– Example of argument

www.netbook.cs.purdue.edu

� Getprotobyname

– Maps name of protocol to internal number

– Argument usually "tcp" or "udp"
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Example Service

� Purpose

– Count times invoked

– Return printable ASCII message
� Connection-oriented protocol
� Sequential execution (not concurrent)
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Example Client

� Open TCP connection to server
� Iterate until end-of-file

– Receive text

– Print characters received
� Close connection
� Exit
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Example Server

� Create socket and put in passive mode
� Iterate forever

– Accept next connection, get new socket

– Increment count and send text message
– Close socket for connection

� Notes
– Main socket remains open
– Server never exits
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Socket Calls In Client And Server

SERVER CLIENT

getprotobyname

socket

bind

listen

accept

send

close

gethostbyname

getprotobyname

socket

connect

recv

close

� Client closes socket after use
� Server never closes original socket
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Code For Client

� Arguments to program

– Host

– Protocol port

– Both optional
� Many details
� Minor incompatibilities among socket implementations

– Unix
– Microsoft
– Use C #ifdef
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Example Client Code (1)

/* client.c - code for example client program that uses TCP */

#ifndef unix
#define WIN32
#include <windows.h>
#include <winsock.h>
#else
#define closesocket close
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#endif

#include <stdio.h>
#include <string.h>

#define PROTOPORT 5193 /* default protocol port number */

extern int errno;
char localhost[] = "localhost"; /* default host name */
/*------------------------------------------------------------------------
* Program: client
*
* Purpose: allocate a socket, connect to a server, and print all output
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Example Client Code (2)

* Syntax: client [ host [port] ]
*
* host - name of a computer on which server is executing
* port - protocol port number server is using
*
* Note: Both arguments are optional. If no host name is specified,
* the client uses "localhost"; if no protocol port is
* specified, the client uses the default given by PROTOPORT.
*
*------------------------------------------------------------------------
*/
main(argc, argv)
int argc;
char *argv[];
{

struct hostent *ptrh; /* pointer to a host table entry */
struct protoent *ptrp; /* pointer to a protocol table entry */
struct sockaddr_in sad; /* structure to hold an IP address */
int sd; /* socket descriptor */
int port; /* protocol port number */
char *host; /* pointer to host name */
int n; /* number of characters read */
char buf[1000]; /* buffer for data from the server */

#ifdef WIN32
WSADATA wsaData;
WSAStartup(0x0101, &wsaData);

#endif
memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */
sad.sin_family = AF_INET; /* set family to Internet */
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Example Client Code (3)

/* Check command-line argument for protocol port and extract */
/* port number if one is specified. Otherwise, use the default */
/* port value given by constant PROTOPORT */

if (argc > 2) { /* if protocol port specified */
port = atoi(argv[2]); /* convert to binary */

} else {
port = PROTOPORT; /* use default port number */

}
if (port > 0) /* test for legal value */

sad.sin_port = htons((u_short)port);
else { /* print error message and exit */

fprintf(stderr,"bad port number %s0,argv[2]);
exit(1);

}

/* Check host argument and assign host name. */

if (argc > 1) {
host = argv[1]; /* if host argument specified */

} else {
host = localhost;

}
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Example Client Code (4)

/* Convert host name to equivalent IP address and copy to sad. */

ptrh = gethostbyname(host);
if ( ((char *)ptrh) == NULL ) {

fprintf(stderr,"invalid host: %s0, host);
exit(1);

}
memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

/* Map TCP transport protocol name to protocol number. */

if ( ((int)(ptrp = getprotobyname("tcp"))) == 0) {
fprintf(stderr, "cannot map
exit(1);

}

/* Create a socket. */

sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
if (sd < 0) {

fprintf(stderr, "socket creation failed0);
exit(1);

}

/* Connect the socket to the specified server. */

if (connect(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0) {
fprintf(stderr,"connect failed0);
exit(1);

}
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Example Client Code (5)

/* Repeatedly read data from socket and write to user’s screen. */

n = recv(sd, buf, sizeof(buf), 0);
while (n > 0) {

write(1,buf,n);
n = recv(sd, buf, sizeof(buf), 0);

}

/* Close the socket. */

closesocket(sd);

/* Terminate the client program gracefully. */

exit(0);
}
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Code For Server

� Arguments to program

– Protocol port
� C language ifdefs for socket variants
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Example Server Code (1)

/* server.c - code for example server program that uses TCP */
#ifndef unix
#define WIN32
#include <windows.h>
#include <winsock.h>
#else
#define closesocket close
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#endif

#include <stdio.h>
#include <string.h>

#define PROTOPORT 5193 /* default protocol port number */
#define QLEN 6 /* size of request queue */

int visits = 0; /* counts client connections */
/*------------------------------------------------------------------------
* Program: server
*
* Purpose: allocate a socket and then repeatedly execute the following:
* (1) wait for the next connection from a client
* (2) send a short message to the client
* (3) close the connection
* (4) go back to step (1)
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Example Server Code (2)

* Syntax: server [ port ]
*
* port - protocol port number to use
*
* Note: The port argument is optional. If no port is specified,
* the server uses the default given by PROTOPORT.
*
*------------------------------------------------------------------------
*/
main(argc, argv)
int argc;
char *argv[];
{

struct hostent *ptrh; /* pointer to a host table entry */
struct protoent *ptrp; /* pointer to a protocol table entry */
struct sockaddr_in sad; /* structure to hold server’s address */
struct sockaddr_in cad; /* structure to hold client’s address */
int sd, sd2; /* socket descriptors */
int port; /* protocol port number */
int alen; /* length of address */
char buf[1000]; /* buffer for string the server sends */

#ifdef WIN32
WSADATA wsaData;
WSAStartup(0x0101, &wsaData);

#endif
memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */
sad.sin_family = AF_INET; /* set family to Internet */
sad.sin_addr.s_addr = INADDR_ANY; /* set the local IP address */
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Example Server Code (3)

/* Check command-line argument for protocol port and extract */
/* port number if one is specified. Otherwise, use the default */
/* port value given by constant PROTOPORT */

if (argc > 1) { /* if argument specified */
port = atoi(argv[1]); /* convert argument to binary */

} else {
port = PROTOPORT; /* use default port number */

}
if (port > 0) /* test for illegal value */

sad.sin_port = htons((u_short)port);
else { /* print error message and exit */

fprintf(stderr,"bad port number %s0,argv[1]);
exit(1);

}

/* Map TCP transport protocol name to protocol number */

if ( ((int)(ptrp = getprotobyname("tcp"))) == 0) {
fprintf(stderr, "cannot map
exit(1);

}

/* Create a socket */

sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
if (sd < 0) {

fprintf(stderr, "socket creation failed0);
exit(1);

}
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Example Server Code (4)

/* Bind a local address to the socket */

if (bind(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0) {
fprintf(stderr,"bind failed0);
exit(1);

}

/* Specify size of request queue */

if (listen(sd, QLEN) < 0) {
fprintf(stderr,"listen failed0);
exit(1);

}

/* Main server loop - accept and handle requests */

while (1) {
alen = sizeof(cad);
if ( (sd2=accept(sd, (struct sockaddr *)&cad, &alen)) < 0) {

fprintf(stderr, "accept failed0);
exit(1);

}
visits++;
sprintf(buf,"This server has been contacted %d time%s0,

visits,visits==1?".":"s.");
send(sd2,buf,strlen(buf),0);
closesocket(sd2);

}
}
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Stream Interface

� Sender

– Calls send repeatedly

– Specifies number of octets per call
� TCP

– Divides stream into segments
� Receiver

– Calls recv repeatedly

– Receives one or more octets per call

– Count of zero means ‘‘end of file’’

– Size received unrelated to size sent
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Internet Applications

� Domain Name System
� Electronic mail
� Remote login
� File transfer
� World Wide Web
� All use client-server model
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Names

� Internet communication requires IP addresses
� Humans prefer to use computer names
� Automated system available to translate names to addresses
� Known as Domain Name System (DNS)
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DNS Functionality

� Given

– Name of a computer
� Returns

– Computer’s internet address
� Method

– Distributed lookup

– Client contacts server(s) as necessary
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Domain Name Syntax

� Alphanumeric segments separated by dots
� Examples

www.netbook.cs.purdue.edu

www.eg.bucknell.edu

� Most significant part on right
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Obtaining A Domain Name

� Organization

– Chooses desired name

– Must be unique

– Registers with central authority

– Placed under one top-level domain
� Names subject to international law for

– Trademarks
– Copyright
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Top-Level Domains

Domain Name Assigned To

com Commercial organization
edu Educational institution
gov Government organization
mil Military group
net Major network support center
org Organization other than those above
arpa Temporary ARPA domain (still used)
int International organization
country code A country

� Meaning assigned to each
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Within Organization

� Subdivision possible
� Arbitrary levels allowed
� Not standardized
� Controlled locally by organization
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Example Name Structure

� First level is .com
� Second level is company name
� Third level is division within company
� Fourth level either

– Company subdivision

– Individual computer
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An Example

� Assume

– Company is Foobar

– Has two divisions

* Soap division

* Candy division
� Candy division has subdivisions
� Soap division has no subdivisions
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An Example
(continued)

� Names in soap division have form

computer . soap . foobar . com

� Names in candy division have form

computer . subdivision . candy . foobar . com
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Illustration Of Foobar Naming Hierarchy

com

foobar

candy soap

peanut almond walnut
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The Point About Names

The number of segments in a domain name corresponds to
the naming hierarchy. There is no universal standard; each
organization can choose how to structure names in its
hierarchy. Furthermore, names within an organization do not
need to follow a uniform pattern; individual groups within the
organization can choose a hierarchical structure that is
appropriate for the group.
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DNS Client-Server Interaction

� Client known as resolver
� Multiple DNS servers used
� Arranged in hierarchy
� Each server corresponds to contiguous part of naming

hierarchy
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Two Possible DNS Hierarchies

com

foobar

candy soap

peanut almond walnut

root server

server for
foobar .comserver for

candy. foobar .com

com

foobar

candy soap

peanut almond walnut

root server

server for
walnut .candy. foobar .com

server for
foobar .com

� Choice made by organization
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Inter-Server Links

All domain name servers are linked together to form a
unified system. Each server knows how to reach a root server
and how to reach servers that are authorities for names further
down the hierarchy.
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In Practice

� DNS uses backup server(s)
� ISPs and others

– Offer DNS service to subscribers
� Small organizations and individuals

– Only need domain names for computers running servers

– Contract with an ISP for domain service
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DNS Lookup

� Application

– Becomes DNS client

– Sends request to local DNS server
� Local server

– If answer known, returns response

– If answer unknown

* Starts at top-level server

* Follows links

* Returns response
� Called name resolution
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Caching In DNS

� Server always caches answers
� Host can cache answers
� Caching

– Improves efficiency

– Eliminates unnecessary search

– Works well because high locality of reference

CS422  Part 14 77 Spring 1999



DNS Types

� Each entry in server consists of

– Domain name

– DNS type for name

– Value to which name corresponds
� During lookup, client must supply

– Name

– Type
� Server

– Matches both name and type
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The Point About Types

The domain name system stores a type with each entry.
When a resolver looks up a name, the resolver must specify the
type that is desired; a DNS server returns only entries that
match the specified type.
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Example DNS Types

� Type A (Address)

– Value is IP address for named computer
� Type MX (Mail eXchanger)

– Value is IP address of computer with mail server for
name

� Type CNAME (Computer NAME)

– Value is another domain name

– Used to establish alias (www)
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Domain Name Abbreviation

� DNS lookup uses full names
� Users desire abbreviations
� Technique

– Configure resolver with list of suffixes

– Try suffixes one at a time
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Example Of DNS Abbreviation

� Suffixes are

– cs . purdue . edu

– purdue . edu

– ecn . purdue . edu
� User enters name www
� Resolver tries

– www

– www . cs . purdue . edu
– www . purdue . edu
– www . ecn . purdue . edu
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Other Internet Applications

� Invoked directly by user

– E-mail

– Remote login

– File Transfer

– Web browsing
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Electronic Mail

� Originally

– Memo sent from one user to another
� Now

– Memo sent to one or more mailboxes
� Mailbox

– Destination point for messages

– Can be storage or program

– Given unique address
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E-mail Address

� Text string
� Specifies mail destination
� General form

mailbox @ computer

� computer

– Domain name of computer

– Actually type MX
� mailbox

– Destination on the computer
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Use Of E-mail Address

Each electronic mailbox has a unique address, which is
divided into two parts: the first identifies a user’s mailbox, and
the second identifies a computer on which the mailbox resides.
E-mail software on the sender’s computer uses the second part
to select a destination; e-mail software on the recipient’s
computer uses the first part to select a particular mailbox.
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Mail Message Format

� Header

– Identifies sender, recipient(s), memo contents

– Lines of form

keyword : information

� Blank line
� Body

– Contains text of message
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Example E-mail Header Fields

Keyword Meaning

From Sender’s address
To Recipients’ addresses
Cc Addresses for carbon copies
Date Date on which message was sent
Subject Topic of the message
Reply-To Address to which reply should go
X-Charset Character set used (usually ASCII)
X-Mailer Mail software used to send the message
X-Sender Duplicate of sender’s address
X-Face Encoded image of the sender’s face

� Most header lines optional
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Extending E-mail

� Original e-mail

– Message restricted to ASCII text
� Users desire to send

– Image files

– Audio clips

– Compiled (binary) programs
� Solution

– Multi-purpose Internet Mail Extensions (MIME)
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MIME

� Allows transmission of

– Binary data

– Multimedia files (video/audio clips)

– Multiple types in single message

– Mixed formats
� Backward compatible
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MIME Encoding

� Sender

– Inserts additional header lines

– Encodes binary data in (printable) ASCII
� Sent like standard message
� Receiver

– Interprets header lines

– Extracts and decodes parts
� Separate standards for content and encoding
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Example Of MIME

� Header lines added

MIME-Version: 1.0

Content-Type: Multipart/Mixed; Boundary=xxxsep

� Specifies

– Using MIME version 1.0

– Line xxxsep appears before each message part
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Mail Transfer

� Protocol is Simple Mail Transfer Protocol (SMTP)
� Runs over TCP
� Used between

– Mail transfer program on sender’s computer

– Mail server on recipient’s computer
� Specifies how

– Client interacts with server
– Recipients specified
– Message is transferred
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Illustration Of Mail Transfer

Internet

user interface on
sender’s computer

mail transfer program
on sender’s computer

recipient’s
mailbox

server on
recipient’s computer

� Server

– Required to receive mail

– Places message in user’s mailbox
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Terminology

� Mail exploder

– Program

– Accepts incoming message

– Delivers to multiple recipients
� Mailing list

– Database

– Used by exploder
� Mail gateway

– Connects two mail systems
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Illustration Of A Mailing List

List Contents

friends Joe@foo.com, Jill@bar.gov, Tim@StateU.edu
Mary@acollege.edu, Hank@nonexist.com,

customers george@xyz.com, VP_Marketing@news.com
bball-interest hank@none.com, Linda_S_Smith@there.com,

John_Q_Public@foobar.com, Connie@foo.edu

� Separate permissions for

– Mailing to list

– Adding/deleting members

* Public – anyone can join

* Private – access restricted by owner
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Illustration Of A Mail Gateway

database

Internet

e-mail
gateway

sender’s
computer

recipient’s
computer

user interface

mail transfer
program

recipient’s
mailbox

mail server

exploder mail transfer
program

� Can connect two

– Heterogeneous systems

– Internet to non-Internet
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Computers Without Mail Servers

� Typically

– Small, personal computer

– Not continuously connected to Internet
� To receive e-mail, user must

– Establish mailbox on large computer

– Access mailbox as necessary
� Post Office Protocol (POP) used
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Illustration Of POP

Internet

sending
computer

computer with
mailbox

user’s
computer

mail transfer
program

recipient’s
mailbox

mail server POP server

POP client

� Current version named POP3
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Remote Login

� Provide interactive access to computer from remote site
� Standard protocol is TELNET
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TELNET

� Text-oriented interface
� User

– Invokes client

– Specifies remote computer
� Client

– Forms TCP connection to server

– Passes keystrokes over connection

– Displays output on screen
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File Transfer

� Complete file copy
� Major protocol is File Transfer Protocol (FTP)

– Uses TCP

– Supports binary or text transfers

– Large set of commands

– Until 1995 was major source of packets in Internet
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FTP Paradigm

� Command-line interface
� User

– Forms TCP connection to server (called control
connection)

– Logs in

– Enters commands to list directories, transfer files
� Server

– Establishes new TCP connection for each transfer
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Illustration Of TCP Connections
During An FTP File Transfer

FTP
client

FTP
server

Internet

control connection

data connection

� Two TCP connections used
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Summary

� Applications use client-server paradigm for interaction
� Client

– Arbitrary application

– Actively initiates communication

– Must know server’s

* IP address

* Protocol port number
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Summary
(continued)

� Server

– Specialized program

– Runs forever

– Usually offers one service

– Passively waits for clients

– Can handle multiple clients simultaneously
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Summary
(continued)

� Socket API

– Standardized

– Specifies interface between applications and protocol
software

� Socket

– Operating system abstraction

– Created dynamically

– Used by clients and servers
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Summary
(continued)

� Domain Name System

– Maps name to IP address

– Uses on-line servers

– Uses caching for efficiency
� Two e-mail transfer protocols

– SMTP

– POP3
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Summary
(continued)

� Remote login

– Remote, interactive use

– Protocol is TELNET
� File transfer

– Copy of entire file

– Protocol is FTP
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