
PART XIV

Internet Applications

(Client-Server Concept, Use
of Protocol Ports, Socket API,
DNS, E-mail, TELNET, FTP)

CS422 Part 14 1 Spring 1999

Functionality

� Transport layer and layers below

– Basic communication

– Reliability
� Application layer

– Abstractions

* Files

* Services

* Databases

– Names

CS422 Part 14 2 Spring 1999

Dichotomy Of Duties

� Network

– Transfers bits

– Operates at application’s request
� Applications determine

– What to send

– When to send

– Where to send

– Meaning of bits

CS422 Part 14 3 Spring 1999

Important Point

Although an internet system provides a basic communication
service, the protocol software cannot initiate contact with, or
accept contact from, a remote computer. Instead, two
application programs must participate in any communication:
one application initiates communication and the other accepts
it.

CS422 Part 14 4 Spring 1999

How Two Application Programs
Make Contact

� One application

– Begins execution first

– Waits passively at prearranged location
� Another application

– Begins execution later

– Actively contacts first program
� Called client-server interaction

CS422 Part 14 5 Spring 1999

Client-Server Paradigm

� Used by all network applications
� Passive program called a server
� Active program called a client

CS422 Part 14 6 Spring 1999

Internet Communication

All network applications use a form of communication
known as the client-server paradigm. A server application waits
passively for contact, while a client application initiates
communication actively.

CS422 Part 14 7 Spring 1999

Characteristics Of A Client

� Arbitrary application program
� Becomes client temporarily
� Can also perform other computations
� Invoked directly by user
� Runs locally on user’s computer
� Actively initiates contact with a server
� Contacts one server at a time

CS422 Part 14 8 Spring 1999

Characteristics Of A Server

� Special-purpose, privileged program
� Dedicated to providing one service
� Can handle multiple remote clients simultaneously
� Invoked automatically when system boots
� Executes forever
� Needs powerful computer and operating system
� Waits passively for client contact
� Accepts requests from arbitrary clients

CS422 Part 14 9 Spring 1999

Terminology

� Server

– An executing program that accepts contact over the
network

� Server-class computer

– Hardware sufficient to execute a server
� Informally

– Term server often applied to computer

CS422 Part 14 10 Spring 1999

Direction Of Data Flow

� Data can flow

– From client to server only

– From server to client only

– In both directions
� Application protocol determines flow
� Typical scenario

– Client sends request(s)

– Server sends response(s)

CS422 Part 14 11 Spring 1999

Key Idea

Although the client initiates contact, information can flow in
either or both directions between a client and server. Many
services arrange for the client to send one or more requests and
the server to return one response for each request.

CS422 Part 14 12 Spring 1999

Clients, Servers, And Other Protocols

client

transport
internet

net. iface.

server

transport
internet

net. iface.

internet

� Clients and servers are application programs

CS422 Part 14 13 Spring 1999

Server CPU Use

� Facts

– Server operates like other applications

* Uses CPU to execute instructions

* Performs I/O operations

– Waiting for data to arrive over a network does not
require CPU time

� Consequence

– Server program only uses CPU when servicing a request

CS422 Part 14 14 Spring 1999

Multiple Services

� Can have multiple servers on single computer
� Servers only use processor when handling a request
� Powerful hardware required to handle many services

simultaneously

CS422 Part 14 15 Spring 1999

Illustration Of Multiple Servers

client
1

transport
internet

net. iface.

client
2

transport
internet

net. iface.

server
1

server
2

transport
internet

net. iface.

internet

� Each server offers one service
� One server can handle multiple clients

CS422 Part 14 16 Spring 1999

Identifying A Service

� Protocol port number used
� Each service given unique port number, P
� Server

– Informs OS it is using port P

– Waits for requests to arrive
� Client

– Forms request

– Sends request to port P on server computer

CS422 Part 14 17 Spring 1999

The Point About Ports

Transport protocols assign each service a unique port
identifier. A server must specify the identifier when it begins
execution. A client must specify the identifier when it requests
transport protocol software to contact a server. Protocol
software on the server computer uses the identifier to direct an
incoming request to the correct server.

CS422 Part 14 18 Spring 1999

In Theory

� Port numbers are merely integers
� Any server could use any port number

CS422 Part 14 19 Spring 1999

In Practice

� Protocol port numbers used as service identifiers
� Need uniform numbering

– To allow arbitrary client to contact server on arbitrary
machine

– To avoid inventing ‘‘directory assistance’’ mechanism
� Port numbers

– Uniform throughout Internet

– Set by standards bodies

CS422 Part 14 20 Spring 1999

Terminology

� Sequential program

– Typical of most programs

– Single thread of control
� Concurrent program

– Multiple threads of control

– Execution proceeds ‘‘in parallel’’

– More difficult to create

CS422 Part 14 21 Spring 1999

Servers And Concurrency

� Sequential server

– Also called iterative

– Handles one request at a time
� Concurrent server

– Can handle multiple requests at a time

– No waiting

CS422 Part 14 22 Spring 1999

Delay In Servers

� Concurrent server

– Server creates new thread of control to handle each
request

– Client only waits for its request to be processed
� Sequential server

– Client waits for all previous requests to be processed as
well as for its request to be processed

– Unacceptable to user if long request blocks short request

CS422 Part 14 23 Spring 1999

Concurrency In Servers

Concurrent execution is fundamental to servers because
concurrency permits multiple clients to obtain a given service
without having to wait for the server to finish previous requests.
In a concurrent server, the main server thread creates a new
service thread to handle each client.

CS422 Part 14 24 Spring 1999

Protocol Ports And Concurrent Servers

� Apparent problem

– One port number assigned to each service

– Concurrent server has multiple copies (threads) running

– Client and server may interact

– Messages sent to server’s port must be delivered to
correct copy

CS422 Part 14 25 Spring 1999

Protocol Ports And Concurrent Servers
(continued)

� Solution to problem: use information about client as well as
server to deliver incoming packets

� TCP uses four items to identify connection

– Server’s IP address

– Server’s protocol port number

– Client’s IP address

– Client’s protocol port number

CS422 Part 14 26 Spring 1999

Demultiplexing In A Concurrent Server

Transport protocols assign an identifier to each client as
well as to each service. Protocol software on the server’s
machine uses the combination of client and server identifiers to
choose the correct copy of a concurrent server.

CS422 Part 14 27 Spring 1999

Variations On A Theme

� A server can use

– Connectionless transport (UDP)

– Connection-oriented transport (TCP)

– Both for a single service
� A single server can offer multiple services

– Often used for ‘‘trivial’’ services

– Server uses multiple port numbers simultaneously

CS422 Part 14 28 Spring 1999

Variations On A Theme
(continued)

� A server can

– Maintain interaction with a client for days or hours

– Send a short response and terminate interaction

– Perform I/O on the local computer

– Become a client for another service (potential cycle
problem)

CS422 Part 14 29 Spring 1999

Example Of Circularity

� Time server

– Returns time of day
� File server

– Allows client to read or write a file

– Calls time server when generating time stamp for file
� Suppose programmer modifies time server to log requests to

a file

CS422 Part 14 30 Spring 1999

Interacting With Protocol Software

� Client or server uses transport protocols
� Protocol software inside OS
� Applications outside OS
� Mechanism needed to bridge the two

– Called Application Program Interface (API)

CS422 Part 14 31 Spring 1999

Application Program Interface

� Part of operating system
� Permits application to use protocols
� Defines

– Operations allowed

– Arguments for each operation

CS422 Part 14 32 Spring 1999

Socket API

� Originally designed

– For BSD UNIX

– To use with TCP/IP protocols
� Now

– Industry standard

– Available on many operating systems

CS422 Part 14 33 Spring 1999

Socket

� OS Abstraction (not hardware)
� Created dynamically
� Persists only while application runs
� Referenced by a descriptor

CS422 Part 14 34 Spring 1999

Descriptor

� Small integer
� One per active socket
� Used in all operations on socket
� Generated by OS when socket created
� Only meaningful to application that owns socket
� In UNIX, integrated with file descriptors

CS422 Part 14 35 Spring 1999

Creating A Socket

� Application calls socket function

sdesc = socket(protofamily, type, proto)

� OS returns descriptor for socket
� Descriptor valid until application closes socket or exits

CS422 Part 14 36 Spring 1999

Socket Functionality

� Socket completely general
� Can be used

– By client

– By server

– With a CO transport protocol

– With a CL transport protocol

– To send data, receive data, or both
� Large set of operations

CS422 Part 14 37 Spring 1999

Socket Operations

� Close

– Terminate use of socket

– Permanent
� Bind

– Specify protocol port for a socket

– Specify local IP address for a socket

– Can use INADDR_ANY for any IP address

CS422 Part 14 38 Spring 1999

Socket Operations
(continued)

� Listen

– Used by server

– Prepares socket to accept incoming connections
� Accept

– Used by server

– Waits for next connection and returns new socket

CS422 Part 14 39 Spring 1999

Socket Operations
(continued)

� Connect

– Used by client

– Either

* Forms a TCP connection

* Fully specifies addresses for UDP

CS422 Part 14 40 Spring 1999

Two Purposes Of The Connect Function

The connect function, which is called by clients, has two
uses. With connection-oriented transport, connect establishes a
transport connection to a specified server. With connectionless
transport, connect records the server’s address in the socket,
allowing the client to send many messages to the same server
without specifying the destination address with each message.

CS422 Part 14 41 Spring 1999

Socket Operations
(continued)

� Send, sendto, and sndmsg

– Transfer outgoing data from application
� Recv, recvfrom, and recvmsg

– Transfer incoming data to application
� Many additional functions

– Supply support and utility services

– Some implemented as library calls

CS422 Part 14 42 Spring 1999

Examples Of Socket Support Functions

� Gethostbyname

– Maps domain name to IP address

– Example of argument

www.netbook.cs.purdue.edu

� Getprotobyname

– Maps name of protocol to internal number

– Argument usually "tcp" or "udp"

CS422 Part 14 43 Spring 1999

Example Service

� Purpose

– Count times invoked

– Return printable ASCII message
� Connection-oriented protocol
� Sequential execution (not concurrent)

CS422 Part 14 44 Spring 1999

Example Client

� Open TCP connection to server
� Iterate until end-of-file

– Receive text

– Print characters received
� Close connection
� Exit

CS422 Part 14 45 Spring 1999

Example Server

� Create socket and put in passive mode
� Iterate forever

– Accept next connection, get new socket

– Increment count and send text message
– Close socket for connection

� Notes
– Main socket remains open
– Server never exits

CS422 Part 14 46 Spring 1999

Socket Calls In Client And Server

SERVER CLIENT

getprotobyname

socket

bind

listen

accept

send

close

gethostbyname

getprotobyname

socket

connect

recv

close

� Client closes socket after use
� Server never closes original socket

CS422 Part 14 47 Spring 1999

Code For Client

� Arguments to program

– Host

– Protocol port

– Both optional
� Many details
� Minor incompatibilities among socket implementations

– Unix
– Microsoft
– Use C #ifdef

CS422 Part 14 48 Spring 1999

Example Client Code (1)

/* client.c - code for example client program that uses TCP */

#ifndef unix
#define WIN32
#include <windows.h>
#include <winsock.h>
#else
#define closesocket close
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#endif

#include <stdio.h>
#include <string.h>

#define PROTOPORT 5193 /* default protocol port number */

extern int errno;
char localhost[] = "localhost"; /* default host name */
/*--
* Program: client
*
* Purpose: allocate a socket, connect to a server, and print all output

CS422 Part 14 49 Spring 1999

Example Client Code (2)

* Syntax: client [host [port]]
*
* host - name of a computer on which server is executing
* port - protocol port number server is using
*
* Note: Both arguments are optional. If no host name is specified,
* the client uses "localhost"; if no protocol port is
* specified, the client uses the default given by PROTOPORT.
*
*--
*/
main(argc, argv)
int argc;
char *argv[];
{

struct hostent *ptrh; /* pointer to a host table entry */
struct protoent *ptrp; /* pointer to a protocol table entry */
struct sockaddr_in sad; /* structure to hold an IP address */
int sd; /* socket descriptor */
int port; /* protocol port number */
char *host; /* pointer to host name */
int n; /* number of characters read */
char buf[1000]; /* buffer for data from the server */

#ifdef WIN32
WSADATA wsaData;
WSAStartup(0x0101, &wsaData);

#endif
memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */
sad.sin_family = AF_INET; /* set family to Internet */

CS422 Part 14 50 Spring 1999

Example Client Code (3)

/* Check command-line argument for protocol port and extract */
/* port number if one is specified. Otherwise, use the default */
/* port value given by constant PROTOPORT */

if (argc > 2) { /* if protocol port specified */
port = atoi(argv[2]); /* convert to binary */

} else {
port = PROTOPORT; /* use default port number */

}
if (port > 0) /* test for legal value */

sad.sin_port = htons((u_short)port);
else { /* print error message and exit */

fprintf(stderr,"bad port number %s0,argv[2]);
exit(1);

}

/* Check host argument and assign host name. */

if (argc > 1) {
host = argv[1]; /* if host argument specified */

} else {
host = localhost;

}

CS422 Part 14 51 Spring 1999

Example Client Code (4)

/* Convert host name to equivalent IP address and copy to sad. */

ptrh = gethostbyname(host);
if (((char *)ptrh) == NULL) {

fprintf(stderr,"invalid host: %s0, host);
exit(1);

}
memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

/* Map TCP transport protocol name to protocol number. */

if (((int)(ptrp = getprotobyname("tcp"))) == 0) {
fprintf(stderr, "cannot map
exit(1);

}

/* Create a socket. */

sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
if (sd < 0) {

fprintf(stderr, "socket creation failed0);
exit(1);

}

/* Connect the socket to the specified server. */

if (connect(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0) {
fprintf(stderr,"connect failed0);
exit(1);

}

CS422 Part 14 52 Spring 1999

Example Client Code (5)

/* Repeatedly read data from socket and write to user’s screen. */

n = recv(sd, buf, sizeof(buf), 0);
while (n > 0) {

write(1,buf,n);
n = recv(sd, buf, sizeof(buf), 0);

}

/* Close the socket. */

closesocket(sd);

/* Terminate the client program gracefully. */

exit(0);
}

CS422 Part 14 53 Spring 1999

Code For Server

� Arguments to program

– Protocol port
� C language ifdefs for socket variants

CS422 Part 14 54 Spring 1999

Example Server Code (1)

/* server.c - code for example server program that uses TCP */
#ifndef unix
#define WIN32
#include <windows.h>
#include <winsock.h>
#else
#define closesocket close
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#endif

#include <stdio.h>
#include <string.h>

#define PROTOPORT 5193 /* default protocol port number */
#define QLEN 6 /* size of request queue */

int visits = 0; /* counts client connections */
/*--
* Program: server
*
* Purpose: allocate a socket and then repeatedly execute the following:
* (1) wait for the next connection from a client
* (2) send a short message to the client
* (3) close the connection
* (4) go back to step (1)

CS422 Part 14 55 Spring 1999

Example Server Code (2)

* Syntax: server [port]
*
* port - protocol port number to use
*
* Note: The port argument is optional. If no port is specified,
* the server uses the default given by PROTOPORT.
*
*--
*/
main(argc, argv)
int argc;
char *argv[];
{

struct hostent *ptrh; /* pointer to a host table entry */
struct protoent *ptrp; /* pointer to a protocol table entry */
struct sockaddr_in sad; /* structure to hold server’s address */
struct sockaddr_in cad; /* structure to hold client’s address */
int sd, sd2; /* socket descriptors */
int port; /* protocol port number */
int alen; /* length of address */
char buf[1000]; /* buffer for string the server sends */

#ifdef WIN32
WSADATA wsaData;
WSAStartup(0x0101, &wsaData);

#endif
memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */
sad.sin_family = AF_INET; /* set family to Internet */
sad.sin_addr.s_addr = INADDR_ANY; /* set the local IP address */

CS422 Part 14 56 Spring 1999

Example Server Code (3)

/* Check command-line argument for protocol port and extract */
/* port number if one is specified. Otherwise, use the default */
/* port value given by constant PROTOPORT */

if (argc > 1) { /* if argument specified */
port = atoi(argv[1]); /* convert argument to binary */

} else {
port = PROTOPORT; /* use default port number */

}
if (port > 0) /* test for illegal value */

sad.sin_port = htons((u_short)port);
else { /* print error message and exit */

fprintf(stderr,"bad port number %s0,argv[1]);
exit(1);

}

/* Map TCP transport protocol name to protocol number */

if (((int)(ptrp = getprotobyname("tcp"))) == 0) {
fprintf(stderr, "cannot map
exit(1);

}

/* Create a socket */

sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
if (sd < 0) {

fprintf(stderr, "socket creation failed0);
exit(1);

}

CS422 Part 14 57 Spring 1999

Example Server Code (4)

/* Bind a local address to the socket */

if (bind(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0) {
fprintf(stderr,"bind failed0);
exit(1);

}

/* Specify size of request queue */

if (listen(sd, QLEN) < 0) {
fprintf(stderr,"listen failed0);
exit(1);

}

/* Main server loop - accept and handle requests */

while (1) {
alen = sizeof(cad);
if ((sd2=accept(sd, (struct sockaddr *)&cad, &alen)) < 0) {

fprintf(stderr, "accept failed0);
exit(1);

}
visits++;
sprintf(buf,"This server has been contacted %d time%s0,

visits,visits==1?".":"s.");
send(sd2,buf,strlen(buf),0);
closesocket(sd2);

}
}

CS422 Part 14 58 Spring 1999

Stream Interface

� Sender

– Calls send repeatedly

– Specifies number of octets per call
� TCP

– Divides stream into segments
� Receiver

– Calls recv repeatedly

– Receives one or more octets per call

– Count of zero means ‘‘end of file’’

– Size received unrelated to size sent

CS422 Part 14 59 Spring 1999

Internet Applications

� Domain Name System
� Electronic mail
� Remote login
� File transfer
� World Wide Web
� All use client-server model

CS422 Part 14 60 Spring 1999

Names

� Internet communication requires IP addresses
� Humans prefer to use computer names
� Automated system available to translate names to addresses
� Known as Domain Name System (DNS)

CS422 Part 14 61 Spring 1999

DNS Functionality

� Given

– Name of a computer
� Returns

– Computer’s internet address
� Method

– Distributed lookup

– Client contacts server(s) as necessary

CS422 Part 14 62 Spring 1999

Domain Name Syntax

� Alphanumeric segments separated by dots
� Examples

www.netbook.cs.purdue.edu

www.eg.bucknell.edu

� Most significant part on right

CS422 Part 14 63 Spring 1999

Obtaining A Domain Name

� Organization

– Chooses desired name

– Must be unique

– Registers with central authority

– Placed under one top-level domain
� Names subject to international law for

– Trademarks
– Copyright

CS422 Part 14 64 Spring 1999

Top-Level Domains

Domain Name Assigned To

com Commercial organization
edu Educational institution
gov Government organization
mil Military group
net Major network support center
org Organization other than those above
arpa Temporary ARPA domain (still used)
int International organization
country code A country

� Meaning assigned to each

CS422 Part 14 65 Spring 1999

Within Organization

� Subdivision possible
� Arbitrary levels allowed
� Not standardized
� Controlled locally by organization

CS422 Part 14 66 Spring 1999

Example Name Structure

� First level is .com
� Second level is company name
� Third level is division within company
� Fourth level either

– Company subdivision

– Individual computer

CS422 Part 14 67 Spring 1999

An Example

� Assume

– Company is Foobar

– Has two divisions

* Soap division

* Candy division
� Candy division has subdivisions
� Soap division has no subdivisions

CS422 Part 14 68 Spring 1999

An Example
(continued)

� Names in soap division have form

computer . soap . foobar . com

� Names in candy division have form

computer . subdivision . candy . foobar . com

CS422 Part 14 69 Spring 1999

Illustration Of Foobar Naming Hierarchy

com

foobar

candy soap

peanut almond walnut

CS422 Part 14 70 Spring 1999

The Point About Names

The number of segments in a domain name corresponds to
the naming hierarchy. There is no universal standard; each
organization can choose how to structure names in its
hierarchy. Furthermore, names within an organization do not
need to follow a uniform pattern; individual groups within the
organization can choose a hierarchical structure that is
appropriate for the group.

CS422 Part 14 71 Spring 1999

DNS Client-Server Interaction

� Client known as resolver
� Multiple DNS servers used
� Arranged in hierarchy
� Each server corresponds to contiguous part of naming

hierarchy

CS422 Part 14 72 Spring 1999

Two Possible DNS Hierarchies

com

foobar

candy soap

peanut almond walnut

root server

server for
foobar .comserver for

candy. foobar .com

com

foobar

candy soap

peanut almond walnut

root server

server for
walnut .candy. foobar .com

server for
foobar .com

� Choice made by organization

CS422 Part 14 73 Spring 1999

Inter-Server Links

All domain name servers are linked together to form a
unified system. Each server knows how to reach a root server
and how to reach servers that are authorities for names further
down the hierarchy.

CS422 Part 14 74 Spring 1999

In Practice

� DNS uses backup server(s)
� ISPs and others

– Offer DNS service to subscribers
� Small organizations and individuals

– Only need domain names for computers running servers

– Contract with an ISP for domain service

CS422 Part 14 75 Spring 1999

DNS Lookup

� Application

– Becomes DNS client

– Sends request to local DNS server
� Local server

– If answer known, returns response

– If answer unknown

* Starts at top-level server

* Follows links

* Returns response
� Called name resolution

CS422 Part 14 76 Spring 1999

Caching In DNS

� Server always caches answers
� Host can cache answers
� Caching

– Improves efficiency

– Eliminates unnecessary search

– Works well because high locality of reference

CS422 Part 14 77 Spring 1999

DNS Types

� Each entry in server consists of

– Domain name

– DNS type for name

– Value to which name corresponds
� During lookup, client must supply

– Name

– Type
� Server

– Matches both name and type

CS422 Part 14 78 Spring 1999

The Point About Types

The domain name system stores a type with each entry.
When a resolver looks up a name, the resolver must specify the
type that is desired; a DNS server returns only entries that
match the specified type.

CS422 Part 14 79 Spring 1999

Example DNS Types

� Type A (Address)

– Value is IP address for named computer
� Type MX (Mail eXchanger)

– Value is IP address of computer with mail server for
name

� Type CNAME (Computer NAME)

– Value is another domain name

– Used to establish alias (www)

CS422 Part 14 80 Spring 1999

Domain Name Abbreviation

� DNS lookup uses full names
� Users desire abbreviations
� Technique

– Configure resolver with list of suffixes

– Try suffixes one at a time

CS422 Part 14 81 Spring 1999

Example Of DNS Abbreviation

� Suffixes are

– cs . purdue . edu

– purdue . edu

– ecn . purdue . edu
� User enters name www
� Resolver tries

– www

– www . cs . purdue . edu
– www . purdue . edu
– www . ecn . purdue . edu

CS422 Part 14 82 Spring 1999

Other Internet Applications

� Invoked directly by user

– E-mail

– Remote login

– File Transfer

– Web browsing

CS422 Part 14 83 Spring 1999

Electronic Mail

� Originally

– Memo sent from one user to another
� Now

– Memo sent to one or more mailboxes
� Mailbox

– Destination point for messages

– Can be storage or program

– Given unique address

CS422 Part 14 84 Spring 1999

E-mail Address

� Text string
� Specifies mail destination
� General form

mailbox @ computer

� computer

– Domain name of computer

– Actually type MX
� mailbox

– Destination on the computer

CS422 Part 14 85 Spring 1999

Use Of E-mail Address

Each electronic mailbox has a unique address, which is
divided into two parts: the first identifies a user’s mailbox, and
the second identifies a computer on which the mailbox resides.
E-mail software on the sender’s computer uses the second part
to select a destination; e-mail software on the recipient’s
computer uses the first part to select a particular mailbox.

CS422 Part 14 86 Spring 1999

Mail Message Format

� Header

– Identifies sender, recipient(s), memo contents

– Lines of form

keyword : information

� Blank line
� Body

– Contains text of message

CS422 Part 14 87 Spring 1999

Example E-mail Header Fields

Keyword Meaning

From Sender’s address
To Recipients’ addresses
Cc Addresses for carbon copies
Date Date on which message was sent
Subject Topic of the message
Reply-To Address to which reply should go
X-Charset Character set used (usually ASCII)
X-Mailer Mail software used to send the message
X-Sender Duplicate of sender’s address
X-Face Encoded image of the sender’s face

� Most header lines optional

CS422 Part 14 88 Spring 1999

Extending E-mail

� Original e-mail

– Message restricted to ASCII text
� Users desire to send

– Image files

– Audio clips

– Compiled (binary) programs
� Solution

– Multi-purpose Internet Mail Extensions (MIME)

CS422 Part 14 89 Spring 1999

MIME

� Allows transmission of

– Binary data

– Multimedia files (video/audio clips)

– Multiple types in single message

– Mixed formats
� Backward compatible

CS422 Part 14 90 Spring 1999

MIME Encoding

� Sender

– Inserts additional header lines

– Encodes binary data in (printable) ASCII
� Sent like standard message
� Receiver

– Interprets header lines

– Extracts and decodes parts
� Separate standards for content and encoding

CS422 Part 14 91 Spring 1999

Example Of MIME

� Header lines added

MIME-Version: 1.0

Content-Type: Multipart/Mixed; Boundary=xxxsep

� Specifies

– Using MIME version 1.0

– Line xxxsep appears before each message part

CS422 Part 14 92 Spring 1999

Mail Transfer

� Protocol is Simple Mail Transfer Protocol (SMTP)
� Runs over TCP
� Used between

– Mail transfer program on sender’s computer

– Mail server on recipient’s computer
� Specifies how

– Client interacts with server
– Recipients specified
– Message is transferred

CS422 Part 14 93 Spring 1999

Illustration Of Mail Transfer

Internet

user interface on
sender’s computer

mail transfer program
on sender’s computer

recipient’s
mailbox

server on
recipient’s computer

� Server

– Required to receive mail

– Places message in user’s mailbox

CS422 Part 14 94 Spring 1999

Terminology

� Mail exploder

– Program

– Accepts incoming message

– Delivers to multiple recipients
� Mailing list

– Database

– Used by exploder
� Mail gateway

– Connects two mail systems

CS422 Part 14 95 Spring 1999

Illustration Of A Mailing List

List Contents

friends Joe@foo.com, Jill@bar.gov, Tim@StateU.edu
Mary@acollege.edu, Hank@nonexist.com,

customers george@xyz.com, VP_Marketing@news.com
bball-interest hank@none.com, Linda_S_Smith@there.com,

John_Q_Public@foobar.com, Connie@foo.edu

� Separate permissions for

– Mailing to list

– Adding/deleting members

* Public – anyone can join

* Private – access restricted by owner

CS422 Part 14 96 Spring 1999

Illustration Of A Mail Gateway

database

Internet

e-mail
gateway

sender’s
computer

recipient’s
computer

user interface

mail transfer
program

recipient’s
mailbox

mail server

exploder mail transfer
program

� Can connect two

– Heterogeneous systems

– Internet to non-Internet

CS422 Part 14 97 Spring 1999

Computers Without Mail Servers

� Typically

– Small, personal computer

– Not continuously connected to Internet
� To receive e-mail, user must

– Establish mailbox on large computer

– Access mailbox as necessary
� Post Office Protocol (POP) used

CS422 Part 14 98 Spring 1999

Illustration Of POP

Internet

sending
computer

computer with
mailbox

user’s
computer

mail transfer
program

recipient’s
mailbox

mail server POP server

POP client

� Current version named POP3

CS422 Part 14 99 Spring 1999

Remote Login

� Provide interactive access to computer from remote site
� Standard protocol is TELNET

CS422 Part 14 100 Spring 1999

TELNET

� Text-oriented interface
� User

– Invokes client

– Specifies remote computer
� Client

– Forms TCP connection to server

– Passes keystrokes over connection

– Displays output on screen

CS422 Part 14 101 Spring 1999

File Transfer

� Complete file copy
� Major protocol is File Transfer Protocol (FTP)

– Uses TCP

– Supports binary or text transfers

– Large set of commands

– Until 1995 was major source of packets in Internet

CS422 Part 14 102 Spring 1999

FTP Paradigm

� Command-line interface
� User

– Forms TCP connection to server (called control
connection)

– Logs in

– Enters commands to list directories, transfer files
� Server

– Establishes new TCP connection for each transfer

CS422 Part 14 103 Spring 1999

Illustration Of TCP Connections
During An FTP File Transfer

FTP
client

FTP
server

Internet

control connection

data connection

� Two TCP connections used

CS422 Part 14 104 Spring 1999

Summary

� Applications use client-server paradigm for interaction
� Client

– Arbitrary application

– Actively initiates communication

– Must know server’s

* IP address

* Protocol port number

CS422 Part 14 105 Spring 1999

Summary
(continued)

� Server

– Specialized program

– Runs forever

– Usually offers one service

– Passively waits for clients

– Can handle multiple clients simultaneously

CS422 Part 14 106 Spring 1999

Summary
(continued)

� Socket API

– Standardized

– Specifies interface between applications and protocol
software

� Socket

– Operating system abstraction

– Created dynamically

– Used by clients and servers

CS422 Part 14 107 Spring 1999

Summary
(continued)

� Domain Name System

– Maps name to IP address

– Uses on-line servers

– Uses caching for efficiency
� Two e-mail transfer protocols

– SMTP

– POP3

CS422 Part 14 108 Spring 1999

Summary
(continued)

� Remote login

– Remote, interactive use

– Protocol is TELNET
� File transfer

– Copy of entire file

– Protocol is FTP

CS422 Part 14 109 Spring 1999

